跳到主要内容

YOLOv11

此文档讲解如何在安装了瑞莎智核 AX-M1 的 host 设备上运行 YOLOv11 示例应用, 代码和编译方法请参考 ax_yolo11_steps.ccax-sample

预编译模型量化方式:w8a16

下载示例应用仓库

使用 huggingfcae-cli 下载示例应用仓库。

Host
pip3 install -U "huggingface_hub[cli]"
huggingface-cli download AXERA-TECH/YOLO11 --local-dir ./YOLO11
cd YOLO11

示例使用

模型推理

Host
chmod +x axcl_yolo11
./axcl_yolo11 -m ax650/yolo11s.axmodel -i football.jpg
(.venv) rock@rock-5b-plus:~/ssd/axera/YOLO11$ ./axcl_yolo11 -m ax650/yolo11s.axmodel -i football.jpg
--------------------------------------
model file : ax650/yolo11s.axmodel
image file : football.jpg
img_h, img_w : 640 640
--------------------------------------
axclrtEngineCreateContextt is done.
axclrtEngineGetIOInfo is done.

grpid: 0

input size: 1
name: images
1 x 640 x 640 x 3


output size: 3
name: /model.23/Concat_output_0
1 x 80 x 80 x 144

name: /model.23/Concat_1_output_0
1 x 40 x 40 x 144

name: /model.23/Concat_2_output_0
1 x 20 x 20 x 144

==================================================

Engine push input is done.
--------------------------------------
post process cost time:0.89 ms
--------------------------------------
Repeat 1 times, avg time 3.41 ms, max_time 3.41 ms, min_time 3.41 ms
--------------------------------------
detection num: 7
0: 95%, [ 759, 213, 1126, 1152], person
0: 94%, [ 0, 359, 315, 1107], person
0: 94%, [1350, 344, 1629, 1036], person
0: 89%, [ 490, 480, 658, 996], person
32: 73%, [ 771, 888, 830, 939], sports ball
32: 67%, [1231, 876, 1280, 924], sports ball
0: 62%, [ 0, 565, 86, 995], person
--------------------------------------

yolov8 demo output