跳到主要内容

YOLOv11-Pose

此文档讲解如何在安装了瑞莎智核 AX-M1 的 host 设备上运行 YOLOv11-Pose 示例应用, 代码和编译方法请参考 ax_yolo11_pose_steps.ccax-sample

预编译模型量化方式:w8a16

下载示例应用仓库

使用 huggingfcae-cli 下载示例应用仓库。

Host
pip3 install -U "huggingface_hub[cli]"
huggingface-cli download AXERA-TECH/YOLO11-Pose --local-dir ./YOLO11-Pose
cd YOLO11-Pose

示例使用

模型推理

Host
chmod +x axcl_yolo11_pose
./axcl_yolo11_pose -m ax650/yolo11x-pose.axmodel -i football.jpg
(.venv) rock@rock-5b-plus:~/ssd/axera/YOLO11-Pose$ ./axcl_yolo11_pose -m ax650/yolo11x-pose.axmodel -i football.jpg
--------------------------------------
model file : ax650/yolo11x-pose.axmodel
image file : football.jpg
img_h, img_w : 640 640
--------------------------------------
axclrtEngineCreateContextt is done.
axclrtEngineGetIOInfo is done.

grpid: 0

input size: 1
name: images
1 x 640 x 640 x 3


output size: 6
name: /model.23/Concat_1_output_0
1 x 80 x 80 x 65

name: /model.23/Concat_2_output_0
1 x 40 x 40 x 65

name: /model.23/Concat_3_output_0
1 x 20 x 20 x 65

name: /model.23/cv4.0/cv4.0.2/Conv_output_0
1 x 80 x 80 x 51

name: /model.23/cv4.1/cv4.1.2/Conv_output_0
1 x 40 x 40 x 51

name: /model.23/cv4.2/cv4.2.2/Conv_output_0
1 x 20 x 20 x 51

==================================================

Engine push input is done.
--------------------------------------
post process cost time:0.40 ms
--------------------------------------
Repeat 1 times, avg time 25.16 ms, max_time 25.16 ms, min_time 25.16 ms
--------------------------------------
detection num: 6
0: 94%, [1350, 337, 1632, 1036], person
0: 93%, [ 492, 477, 658, 1000], person
0: 92%, [ 756, 219, 1126, 1154], person
0: 91%, [ 0, 354, 314, 1108], person
0: 73%, [ 0, 530, 81, 1017], person
0: 54%, [ 142, 589, 239, 1013], person
--------------------------------------

yolov11-pose demo output