跳到主要内容

YOLOv8

此文档讲解如何在安装了瑞莎智核 AX-M1 的 host 设备上运行 YOLOv8 示例应用, 代码和编译方法请参考 ax_yolov8_steps.ccax-sample

预编译模型量化方式:w8a16

下载示例应用仓库

使用 huggingfcae-cli 下载示例应用仓库。

Host
pip3 install -U "huggingface_hub[cli]"
huggingface-cli download AXERA-TECH/YOLOv8 --local-dir ./YOLOv8
cd YOLOv8

示例使用

模型推理

Host
chmod +x axcl_yolov8
./axcl_yolov8 -m ax650/yolov8s.axmodel -i football.jpg
rock@rock-5b-plus:~/ssd/axera/YOLOv8$ ./axcl_yolov8 -m ax650/yolov8s.axmodel -i football.jpg
--------------------------------------
model file : ax650/yolov8s.axmodel
image file : football.jpg
img_h, img_w : 640 640
--------------------------------------
axclrtEngineCreateContextt is done.
axclrtEngineGetIOInfo is done.

grpid: 0

input size: 1
name: images
1 x 640 x 640 x 3


output size: 3
name: /model.22/Concat_output_0
1 x 80 x 80 x 144

name: /model.22/Concat_1_output_0
1 x 40 x 40 x 144

name: /model.22/Concat_2_output_0
1 x 20 x 20 x 144

==================================================

Engine push input is done.
--------------------------------------
post process cost time:0.91 ms
--------------------------------------
Repeat 1 times, avg time 3.79 ms, max_time 3.79 ms, min_time 3.79 ms
--------------------------------------
detection num: 7
0: 93%, [ 757, 215, 1131, 1156], person
0: 93%, [ 0, 354, 311, 1104], person
0: 93%, [1351, 342, 1627, 1032], person
0: 91%, [ 488, 478, 661, 998], person
32: 87%, [ 773, 889, 829, 939], sports ball
32: 77%, [1231, 876, 1280, 922], sports ball
0: 60%, [1840, 690, 1906, 809], person
--------------------------------------

yolov8 demo output