YOLOv8
This document explains how to run the YOLOv8 example application on a host device equipped with the Radxa AICore AX-M1.
Precompiled model quantization methods: w8a16
Download Example Application Repository
Use huggingfcae-cli
to download the example application repository.
Host
pip3 install -U "huggingface_hub[cli]"
huggingface-cli download AXERA-TECH/YOLOv8 --local-dir ./YOLOv8
cd YOLOv8
Example Usage
Model Inference
Host
chmod +x axcl_yolov8
./axcl_yolov8 -m ax650/yolov8s.axmodel -i football.jpg
rock@rock-5b-plus:~/ssd/axera/YOLOv8$ ./axcl_yolov8 -m ax650/yolov8s.axmodel -i football.jpg
--------------------------------------
model file : ax650/yolov8s.axmodel
image file : football.jpg
img_h, img_w : 640 640
--------------------------------------
axclrtEngineCreateContextt is done.
axclrtEngineGetIOInfo is done.
grpid: 0
input size: 1
name: images
1 x 640 x 640 x 3
output size: 3
name: /model.22/Concat_output_0
1 x 80 x 80 x 144
name: /model.22/Concat_1_output_0
1 x 40 x 40 x 144
name: /model.22/Concat_2_output_0
1 x 20 x 20 x 144
==================================================
Engine push input is done.
--------------------------------------
post process cost time:0.91 ms
--------------------------------------
Repeat 1 times, avg time 3.79 ms, max_time 3.79 ms, min_time 3.79 ms
--------------------------------------
detection num: 7
0: 93%, [ 757, 215, 1131, 1156], person
0: 93%, [ 0, 354, 311, 1104], person
0: 93%, [1351, 342, 1627, 1032], person
0: 91%, [ 488, 478, 661, 998], person
32: 87%, [ 773, 889, 829, 939], sports ball
32: 77%, [1231, 876, 1280, 922], sports ball
0: 60%, [1840, 690, 1906, 809], person
--------------------------------------

yolov8 demo output