GoogLeNet Example
This document explains how to use the QAI AppBuilder Python library to run the GoogLeNet object detection model on the Radxa Dragon Q6A.
Install QAI AppBuilder
tip
Please follow the QAI AppBuilder Installation Guide
Run the Example
Install Dependencies
Device
pip3 install requests tqdm qai-hub py3_wget opencv-python torch
Run the Script
-
Navigate to the example directory
Devicecd ai-engine-direct-helper/samples/linux/python
-
Prepare the input image. The following image is used as an example:
Input Image
-
Execute the inference
Devicepython3 googlenet/googlenet.py --image googlenet/input.jpg
(.venv) ubuntu@ubuntu:~/git_clone/ai-engine-direct-helper/samples/linux/python$ python3 googlenet/googlenet.py --image googlenet/input.jpg
Current file directory: /home/ubuntu/git_clone/ai-engine-direct-helper/samples/linux/python/googlenet
/prj/qct/webtech_scratch20/mlg_user_admin/qaisw_source_repo/rel/qairt-2.37.1/point_release/SNPE_SRC/avante-tools/prebuilt/dsp/hexagon-sdk-5.4.0/ipc/fastrpc/rpcmem/src/rpcmem_android.c:38:dummy call to rpcmem_init, rpcmem APIs will be used from libxdsprpc
Top 5 predictions for image:
goldfish 0.7454143167
rock beauty 0.1190399304
clownfish 0.0221503042
tench 0.0095548332
pufferfish 0.0088517098
/prj/qct/webtech_scratch20/mlg_user_admin/qaisw_source_repo/rel/qairt-2.37.1/point_release/SNPE_SRC/avante-tools/prebuilt/dsp/hexagon-sdk-5.4.0/ipc/fastrpc/rpcmem/src/rpcmem_android.c:42:dummy call to rpcmem_deinit, rpcmem APIs will be used from libxdsprpc
314.2ms [WARNING] Time: model_destroy googlenet 15.64
The output shows that goldfish
has the highest confidence score, which matches the content of the input image.