ResNet-50 目标识别
-
进入 Radxa Model-zoo ResNet 目录
cd Radxa-Model-Zoo/sample/ResNet
-
下载模型,可选 F32/F16/INT8 量化模型
# F32
wget https://github.com/radxa-edge/TPU-Edge-AI/releases/download/model-zoo/resnet50_fp32_1b.bmodel
# F16
wget https://github.com/radxa-edge/TPU-Edge-AI/releases/download/model-zoo/resnet50_fp16_1b.bmodel
# INT8
wget https://github.com/radxa-edge/TPU-Edge-AI/releases/download/model-zoo/resnet50_int8_1b.bmodel -
下载测试图片到数据文件夹
mkdir images && cd images
wget https://github.com/radxa-edge/TPU-Edge-AI/releases/download/model-zoo/grace_hopper.bmp -
创建虚拟环境
必须创建虚拟环境,否则可能会影响其他应用的正常运行, 虚拟环境使用请参考这里
python3 -m virtualenv .venv
source .venv/bin/activate -
安装 python 依赖包
pip3 install --upgrade pip
pip3 install numpy
pip3 install https://github.com/radxa-edge/TPU-Edge-AI/releases/download/v0.1.0/sophon_arm-3.7.0-py3-none-any.whl -
运行 python 示例
python 目录下提供了一系列Python例程,具体情况如下:
序号 Python例程 说明 1 resnet_opencv.py 使用OpenCV解码、OpenCV前处理、SAIL推理 2 resnet_bmcv.py 使用SAIL解码、BMCV前处理、SAIL推理 -
运行 resnet_opencv.py
export LD_LIBRARY_PATH=/opt/sophon/libsophon-current/lib:$LD_LIBRARY_PATH
export PYTHONPATH=$PYTHONPATH:/opt/sophon/sophon-opencv-latest/opencv-python/
python3 python/resnet_opencv.py --input ./images --bmodel ./resnet50_int8_1b.bmodel参数说明
resnet_opencv.py [--input IMG_PATH] [--bmodel BMODEL]
--input
: 推理图片路径,可输入整个图片文件夹的路径--bmodel
: 用于推理的bmodel路径(.venv) linaro@bm1684:/data/ssd/docs_check/Radxa-Model-Zoo/sample/ResNet$ python3 python/resnet_opencv.py --input ./images --bmodel ./resnet50_int8_1b.bmodel
[BMRT][bmcpu_setup:406] INFO:cpu_lib 'libcpuop.so' is loaded.
bmcpu init: skip cpu_user_defined
open usercpu.so, init user_cpu_init
[BMRT][load_bmodel:1084] INFO:Loading bmodel from [./resnet50_int8_1b.bmodel]. Thanks for your patience...
[BMRT][load_bmodel:1023] INFO:pre net num: 0, load net num: 1
INFO:root:filename: ./images/grace_hopper.bmp, res: (457, 0.12794505059719086)
INFO:root:result saved in ./results/resnet50_int8_1b.bmodel_dataset_opencv_python_result.json
INFO:root:------------------ Inference Time Info ----------------------
INFO:root:decode_time(ms): 2.94
INFO:root:preprocess_time(ms): 17.86
INFO:root:inference_time(ms): 4.36
INFO:root:postprocess_time(ms): 0.35运行结果会保存在
./results/resnet50_int8_1b.bmodel_dataset_opencv_python_result.json
[
{
"filename": "./dataset/grace_hopper.bmp",
"prediction": 457,
"score": 0.12794505059719086
}
] -
运行 resnet_bmcv.py
export LD_LIBRARY_PATH=/opt/sophon/libsophon-current/lib:$LD_LIBRARY_PATH
export PYTHONPATH=$PYTHONPATH:/opt/sophon/sophon-opencv-latest/opencv-python/
python3 python/resnet_bmcv.py --input ./images --bmodel ./resnet50_int8_1b.bmodel参数说明
resnet_bmcv.py [--input IMG_PATH] [--bmodel BMODEL]
--input
: 推理图片路径,可输入整个图片文件夹的路径--bmodel
: 用于推理的bmodel路径(.venv) linaro@bm1684:/data/ssd/docs_check/Radxa-Model-Zoo/sample/ResNet$ python3 python/resnet_bmcv.py --input ./images --bmodel ./resnet50_int8_1b.bmodel
[BMRT][bmcpu_setup:406] INFO:cpu_lib 'libcpuop.so' is loaded.
bmcpu init: skip cpu_user_defined
open usercpu.so, init user_cpu_init
[BMRT][load_bmodel:1084] INFO:Loading bmodel from [./resnet50_int8_1b.bmodel]. Thanks for your patience...
[BMRT][load_bmodel:1023] INFO:pre net num: 0, load net num: 1
INFO:root:filename: ./images/grace_hopper.bmp, res: (457, 0.14356361329555511)
INFO:root:result saved in ./results/resnet50_int8_1b.bmodel_images_bmcv_python_result.json
INFO:root:------------------ Inference Time Info ----------------------
INFO:root:decode_time(ms): 4.01
INFO:root:preprocess_time(ms): 5.56
INFO:root:inference_time(ms): 1.86
INFO:root:postprocess_time(ms): 0.30运行结果会保存在
./results/resnet50_int8_1b.bmodel_images_bmcv_python_result.json
[
{
"filename": "./images/grace_hopper.bmp",
"prediction": 457,
"score": 0.14356361329555511
}
]
-
FAQ
更多有关模型转换,模型量化细节, 模型精度测试,请参考